Modeling the proximate/obviative contrast in Algonquian languages

Carol-Rose Little Cornell University

Mary Moroney Cornell University

May 6, 2016

1 Introduction

- Algonquian languages make a distinction between proximate-marked nouns (i.e., foregrounded) or obviative-marked nouns (i.e., backgrounded)
- Once a proximate has been established, a speaker has a choice whether to introduce the next noun as either proximate (prominent) or obviative (nonprominent) (Goddard, 1990; Thomason, 2003).
- Consider the following excerpt from Meskwaki, a Central Algonquian language
- (1) oʻni=na'hkači nekotenwi **mahkate'wi-anakwe'wa** e'=ši'ša'či, e'h=nesa'či *pešekesiwani.* And then another time **Black Rainbow** (**P**) went hunting and killed a *deer* (*O*).
- (2) e'=wi'naniha'či, e'h=mo'hki'hta'koči *aša'hahi*, e'h=ma'ne'niči.
 As he (P) was butchering it (O), some Sioux (O) rushed out at him (P), a lot of them (O). (Goddard, 1990: 324)
 - In (1) the topic is Black Rainbow whereas the obviative is a deer.
 - Speaker can introduce Sioux in (2) as proximate (central characters) or as obviative (less central characters) thus, *prima facie*, maintaining the previously established central character Black Rainbow.
 - To investigate the proximate/obviative contrast, we use data from fieldwork on Mi'gmaq, an Eastern Algonquian language
 - Consider the differences between pronouns in English and obviation marking in Mi'gmaq
- (3) Susan_i scratched Mali_i then she_{i/i} went home.
 - she could refer to either Susan or Mali

Glosses abbreviations: 3 = third person; AI = animate intransitive; DIR = direct; PST = past OBV = obviative

- The same sentence in Mi'gmaq is not ambiguous
- (4) **Susan** gejgapa'l-a-pn-n *Mali-al* **Susan.PROX** scratch-DIR-PST.3-OBV *Mali*-OBV

'Susan (P) scratched Mali (O).'

- a.... toqo enmie-**p**. then go.home-**3.PST.PROX**
 - '... then she (Susan) went home.'
- b.... toqo enmie-*nipnn*. then go.hom-3.PST.OBV '...then *she (Mali)* went home.'
- Each argument in (4) is either marked as proximate (PROX) or obviative (OBV)
- The third person agreement on the verb *enmie* reflects this and thus there is no ambiguity as to who went home
- We model this data on the proximate/obviative contrast using Predicate Logic with Anaphora (PLA; Dekker 1994), a system that keeps track of the salience of individuals

Roadmap

- §2 Background on obviation
- §3 Background on PLA
- §4 PLA analysis for data in (4): one-list system
- §5 Ambiguity with third individual: two-list system
- §6 Conclusion

2 Obviation in Algonquian languages

- Proximate and obviative are two ways to differentiate third person arguments.
- In contexts with two third persons, the topical, foregrounded third person is proximate and the nontopical, backgrounded third person is obviative.
- In Mi'gmaq, the proximate (**P**) is unmarked, as in (5a), and the obviative (*O*) is marked with the suffix *-l*, as in (5b).
- (5) a. e'pites b. e'pites-l woman woman-OBV 'woman (P)' 'woman (O)'

1

We gratefully acknowledge comments by Sarah Murray and members of the Cornell Semantics Reading Group. A huge thank you to Mi'gmaq consultants Mary Ann Metallic, Roger Metallic, Janice Vicaire and Joe Wilmot. Any errors are the authors'.

- (6) a. Gesal-a-t-l. love-DIR-3-OBV
 b. Gesal-Ø-t-l. love-INV-3-OBV

 `She (P) loves her (O).'
 `She (O) loves her (P). ¹
 - direct marker (DIR): proximate = subject, obviative = object
 - inverse marker (INV): obviative = subject, proximate = object
 - In (4a) the marking on the verb -p is the third person proximate past, thus the proximate argument Susan went home
 - In (4b) the marking on the verb $-nipnn^2$ is the third person obviative past
 - (4) Susan gejgapa'l-a-pn-n Mali-al Susan.PROX scratch-DIR-PST.3-OBV Mali-OBV 'Susan scratched Mali.'
 - a.... toqo enmie-**p**. then go.home-**3.PST.PROX**
 - '... then she (Susan) went home.'
 - # '... then she (Mali) went home.'
 - b.... toqo enmie-nipnn.
 - then go.home-3.PST.OBV
 - '... then she (Mali) went home.'
 - # '... then she (Susan) went home.'
 - Proximate/obviative contrast marks salience in a discourse
 - PLA: a system that keeps track of states of information and salience of individuals

3 Background on PLA

- Predicate Logic with Anaphora (PLA; Dekker 1994) extends standard Predicate Logic in order to keep track of individuals in a discourse
- (7) A sample PLA information state
- p_i: i indexes the position of the pronoun
- $s = \{ \langle a, b, c \rangle \}$ $\uparrow \uparrow \uparrow$ $P_2 P_1 P_0$

- ∃: introduces individuals to information state
- (8) Susan_i scratched Mali_i then $she_{i/i}$ went home.
- $(9) \qquad \exists x(x = s \land \exists y(y = m \land Sxy)) \land Wp_0$
- $(10) \quad \exists x(x = s \land \exists y(y = m \land Sxy)) \land Wp_1$

¹Here the inverse marker is null. However in the negative we can see that it is -gu:

(1)	Mu gesal-gu-g-u-l NEG love-INV-3-NEG-OBV	
	'She (O) doesn't love her (P).'	(Hamilton, 2015: 20)

 2 For convenience, we gloss this whole morpheme as the third person past obviative. However, it can be separated out as *-ni-pn-n* or 3.0BV-PAST-OBV.

Table 1: Analysis of (9)

	English	PLA	Pro. Interpr.	Output State
a.				$s_0 = \{\langle \rangle\}$
b.	Susan _i scratched Mali _j	$\exists x (x = s \land \exists y (y = m \land Sxy))$		$s_1 = \{\langle m, s \rangle\}$
c.	then she_i went home.	Wp ₀	$[p_0]_{s_1} = s$	$s_2 = \{\langle m, s \rangle\}$

• The quantifier with narrower scope first adds m to the information state

• The quantifier with widest scope then adds s to the information state

Table 2: Analysis of (10)

	English	PLA	Pro. Interpr.	Output State
a.				$s_0 = \{\langle \rangle\}$
b.	Susan _i scratched Mali _j	$\exists x (x = s \land \exists y (y = m \land Sxy))$		$s_1 = \{\langle m, s \rangle\}$
c.	then she _{j} went home.	Wp ₁	$[p_1]_{s_1} = m$	$s_2 = \{\langle m, s \rangle\}$

4 Analysis

- In English the ambiguity of she is represented in PLA by different pronoun terms: p0 and p1
- Intuitively we can represent the lack of ambiguity in the Mi'gmaq data, repeated below, by uniformly translating the proximate and obviative agreement as p₀ and p₁, respectively
- (4) **Susan** gejgapa'l-a-pn-n *Mali-al* **Susan.PROX** scratch-DIR-PST.3-OBV *Mali-*OBV '**Susan** scratched *Mali.*'

a.... toqo enmie-**p**.

- then go.home-3.PST.PROX
- '... then she (Susan) went home.'
- b.... toqo enmie-*nipnn*.

then go.home-3.PST.OBV

- '... then *she* (Mali) went home.'
- PROX: p₀
- OBV: p₁ INV: Vp₁p₀
- (11) (4) $\rightsquigarrow \exists_p y(y = s) \land \exists_o x(x = m) \land Sp_0 p_1$
- $(12) \quad (4a) \rightsquigarrow \mathsf{Wp}_0 \qquad \qquad (13) \quad (4b) \rightsquigarrow \mathsf{Wp}_1$

• DIR: Vp_0p_1

3

• \exists_p : adds to list position 0

• \exists_0 : adds to list position 1

Table 3: Analysis of (4)

	Gloss	PLA	Pro. Intp.	Output State
a.				$s_0 = \{\langle \rangle\}$
b.	Susan.PROX	$\exists_{p} y(y=s)$		$s_1 = \{\langle s \rangle\}$
c.	Mali-OBV	$\exists_{o} x (x = m)$		$s_2 = \{\langle m, s \rangle\}$
d.	scratch-DIR-PST.3-OBV	Sp_0p_1	$[p_0]_{s_2} = s, [p_1]_{s_2} = m$	$s_3 = \{\langle m, s \rangle\}$

Table 4: Analysis of (4a)

	Gloss	PLA	Pro. Intp.	Output State
e.	then go.home-3.PST.PROX	Wp_0	$[p_0]_{s_3} = s$	$s_4 = \{\langle m, s \rangle\}$

Table 5: Analysis of (4b)

	Gloss	PLA	Pro. Intp.	Output State
e.	then go.home-3.PST.OBV	Wp_1	$[p_1]_{s_3} = m$	$s_4 = \{\langle m, s \rangle\}$

5 More complicated data

• New data: introducing a third argument creates ambiguity³

(14)	Susan gejgapa'l-a-t-1 <i>Mali-al.</i> Susan.PROX scratch-DIR-3-OBV <i>Mali</i> -OBV	
	'Susan (P) scratches <i>Mali (O)</i> .'	$\langle m,s \rangle$
	a. Anna gejgapa'l-a-t- <i>l</i> . Anna.PROX scratch-DIR-3-OBV	
	'Anna (P) scratches her (O).'	$\langle m, s, a \rangle$
	b. <i>Anna-l</i> gejgapal-Ø-t-l. <i>Anna</i> -OBV scratch-INV-3-OBV	
	'Anna (O) scratches her (P).' ⁴	$\langle m, a, s \rangle$

• In (14a), when *a* is added to the end of the list, the obviative agreement, p₁ is expected to pick out *s* unambiguously, which is not the case

- Can be ameliorated if the obviative agreement is translated as any index that is not 0, so p_1 or p_2 can pick out the obviative argument.
- In (14b) when *a* is added in the second to last position on the list, it is not clear how we could say that either p₀ or p₂ can pick out the proximate argument.
- Next: how to capture this ambiguity under a **two-list system**

5.1 Two list system analysis

- We adapt PLA to be a two list system
- Bittner (2011) also uses a two list system in her analysis of the proximate/obviative affixes in West Greenlandic

(15) A sample two list information state $s = \{ \langle a, b \rangle_{\blacktriangleleft}, \langle c d \rangle_{\triangleright} \rangle \}$

$$s = \{ \langle \begin{array}{ccc} \langle a, & b \rangle_{\blacktriangleleft}, & \langle c & d \rangle_{\rhd} \\ \uparrow & \uparrow & \uparrow & \uparrow \\ \mathbf{p}_{1}^{\blacktriangleleft} & \mathbf{p}_{0}^{\blacktriangleleft} & \mathbf{p}_{1}^{\rhd} & \mathbf{p}_{0}^{\rhd} \\ \end{array} \right.$$

- PROX: p_i^{\triangleleft} DIR: $Vp_i^{\triangleleft}p_i^{\triangleright}$
- OBV: p_i^{\triangleright} INV: $Vp_i^{\triangleright}p_i^{\triangleleft}$

5.2 Accounting for data in (4)

- (16) (4) $\rightsquigarrow \exists_{\blacktriangleleft} x(x = s) \land \exists_{\triangleright} y(y = m) \land Sp_{n}^{\blacktriangleleft} p_{n}^{\triangleright}$
- (17) $(4a) \rightsquigarrow Wp_0^{\triangleleft}$ (18) $(4b) \rightsquigarrow Wp_0^{\triangleright}$

Table 6: Analysis of (4)

	Gloss	PLA	Pro. Intp.	Output State
a.				$s_0 = \{\langle \langle \rangle, \langle \rangle \rangle\}$
b.	Susan.PROX	$\exists_{\blacktriangleleft} x(x = s)$		$s_1 = \{ \langle \langle s \rangle_{\blacktriangleleft}, \langle \rangle_{\rhd} \rangle \}$
c.	Mali-OBV	$\exists_{\rhd} y(y=m)$		$s_2 = \{ \langle \langle s \rangle_{\blacktriangleleft}, \langle m \rangle_{\rhd} \rangle \}$
d.	scratch-DIR-PST.3-OBV	Sp₀¶p₀⊳	$[\mathbf{p}_0^\blacktriangleleft]_{s_2} = s, [\mathbf{p}_0^\rhd]_{s_2} = m$	$s_3 = \{\langle \langle s \rangle_{\blacktriangleleft}, \langle m \rangle_{\rhd} \rangle\}$

Table 7: Analysis of (4a)

	Gloss	PLA	Pro. Intp.	Output State
e.	then go.home-3.PST.PROX	Wp ₀ ◀	$[p_0^\blacktriangleleft]_{s_3} = s$	$s_4 = \{ \langle \langle s \rangle_{\blacktriangleleft}, \langle m \rangle_{\rhd} \rangle \}$

Table 8: Analysis of (4b)

	Gloss	PLA	Pro. Intp.	Output State
e.	then go.home-3.PST.OBV	Wp_0^\rhd	$[p_0^\rhd]_{s_3} = m$	$s_4 = \{ \langle \langle s \rangle_{\blacktriangleleft}, \langle m \rangle_{\rhd} \rangle \}$

5

 $^{^{3}}$ We use a different tense here (present) than in (4) however the ambiguity is also preserved in the past. 4 The ambiguity goes away if *elg* 'too/also' is added. Though this shows that the particle *elg* targets the VP in Mi'gmaq, like it does in English.

Sa'n-al elg gejgapal-Ø-t-l. John-OBV too scratch-INV-3-OBV
 'John (O) scratches her (P).' Mali scratches John.

5.3 Accounting for data in (14)

(19) (14) $\rightsquigarrow \exists_{\blacktriangleleft} x(x = s) \land \exists_{\triangleright} y(y = m) \land \mathsf{Sp}_0^{\blacktriangleleft} p_0^{\triangleright}$

$$\begin{array}{ll} (20) & (14a) \rightsquigarrow \exists_{\blacktriangleleft} x(x=a) \land \mathsf{Sp}_{0}^{\blacktriangleleft} \mathsf{p}_{0}^{\rhd} \\ & (14a) \rightsquigarrow \exists_{\blacktriangle} x(x=a) \land \mathsf{Sp}_{0}^{\blacktriangleleft} \mathsf{p}_{0}^{\rhd} \\ & (14b) \rightsquigarrow \exists_{\rhd} x(x=a) \land \mathsf{Sp}_{0}^{\blacksquare} \mathsf{p}_{0}^{\rhd} \end{array}$$

• Note that the index on obviative term can be 0 or 1.

Table 9: Analysis of (14)

	Gloss	PLA	Pro. Intp.	Output State
a.				$s_0 = \{ \langle \langle \rangle_{\blacktriangleleft}, \langle \rangle_{\rhd} \rangle \}$
b.	Susan.PROX	$\exists_{\blacktriangleleft} x(x = s)$		$s_1 = \{ \langle \langle s \rangle_{\blacktriangleleft}, \langle \rangle_{\rhd} \rangle \}$
c.	Mali-OBV	$\exists_{\rhd} y(y=m)$		$s_2 = \{ \langle \langle s \rangle_{\blacktriangleleft}, \langle m \rangle_{\rhd} \rangle \}$
d.	scratch-DIR-PST.3-OBV	Sp₀¶p₀⊳	$[p_0^\blacktriangleleft]_{s_2} = s, [p_0^\rhd]_{s_2} = m$	$s_3 = \{\langle \langle s \rangle_{\blacktriangleleft}, \langle m \rangle_{\rhd} \rangle\}$

Table 10: Analysis of (14a)

	Gloss	PLA	Pro. Intp.	Output State
e.	Anna.PROX	$\exists_{\blacktriangleleft} x(x = a)$		$s_4 = \{ \langle \langle a \rangle_{\blacktriangleleft}, \langle m, s \rangle_{\rhd} \rangle \}$
f1.	scratch-DIR-3-OBV	Sp [◀] p [⊳] ₀	$[p_0^\blacktriangleleft]_{s_4} = a, [p_0^\rhd]_{s_4} = s$	$s_5 = \{ \langle \langle a \rangle_{\blacktriangleleft}, \langle m, s \rangle_{\rhd} \rangle \}$
f2.	scratch-DIR-3-OBV	$Sp_0^{\blacktriangleleft}p_1^{\rhd}$	$[p_0^\blacktriangleleft]_{s_4} = a, [p_1^\rhd]_{s_4} = m$	$s_5 = \{ \langle \langle a \rangle_{\blacktriangleleft}, \langle m, s \rangle_{\rhd} \rangle \}$

• In (c), the proximate list is added to the obviative list from input state, *s*₁, to form the obviative list of the output state, *s*₂, and *a* becomes the only member of the proximate list of the output state.

Table 11: Analysis of (14b)

	Gloss	PLA	Pro. Intp.	Output State
e.	Anna-OBV	$\exists_{\blacktriangleleft} x(x = a)$		$s_4 = \{ \langle \langle s, m \rangle_{\blacktriangleleft}, \langle a \rangle_{\rhd} \rangle \}$
f1.	scratch-INV-3-OBV	Sp0 [⊳] p0 [◄]	$[\mathbf{p}_0^{\rhd}]_{s_4} = a, [\mathbf{p}_0^{\blacktriangleleft}]_{s_4} = m$	$s_5 = \{ \langle \langle s, m \rangle_{\blacktriangleleft}, \langle a \rangle_{\rhd} \rangle \}$
f2.	scratch-INV-3-OBV	$Sp_0^{\rhd}p_1^{\blacktriangleleft}$	$[p_0^\rhd]_{s_4} = a, [p_1^\blacktriangle]_{s_4} = s$	$s_5 = \{ \langle \langle s, m \rangle_{\blacktriangleleft}, \langle a \rangle_{\rhd} \rangle \}$

• In this way the ambiguity in Mi'gmaq is represented in the same way as in English where translating the pronoun term with different indices generates the different meanings.

6 Conclusion

• We presented basic data on the obviative/proximate patterns on Mi'gmaq

- We discussed two PLA analyses for how to account for this data
 - One account uses Dekker's (1994) one-list system
 - The other account modifies his system to two lists to separate proximate and obviativemarked individuals
- New fieldwork on Mi'gmaq shows that an ambiguity arises when a third individual has been introduced in a discourse
- This makes the two-list system better equipped to account for the new data because it captures the ambiguity

References

BITTNER, MARIA. 2011. Anaphora without indices: Dynamics of centering.

- DEKKER, PAUL. 1994. Predicate logic with anaphora. *Semantics and linguistic theory (SALT)*, vol. 4, 79–95.
- GODDARD, IVES. 1990. Aspects of the topic structure of Fox narratives: Proximate shifts and the use of overt and inflectional NPs. *International Journal of American Linguistics* 53.317–340.
- HAMILTON, MICHAEL. 2015. *The syntax of Mi'gmaq: a configurational account.* Montreal: McGill University Phd thesis.
- THOMASON, LUCY GREY. 2003. *The proximate and obviative contrast in Meskwaki*. University of Texas Austin PhD dissertation.

A Formulas

PLA

- (22) $s \llbracket \exists \mathsf{x} \phi \rrbracket_{\mathscr{M},g} = \{ e' \cdot d \mid d \in D \& e' \in s \llbracket \phi \rrbracket_{\mathscr{M},g[\mathsf{x}/d]} \}$
 - (22) adds individual d to end of list e'

One List System

- (23) a. $s[\![\exists_P x \phi]\!]_{\mathcal{M},g} = \{e' \cdot d \mid d \in D \& e' \in s[\![\phi]\!]_{\mathcal{M},g[x/d]}\}$ b. $s[\![\exists_O x \phi]\!]_{\mathcal{M},g} = \{e' \cdot d \cdot d' \mid d \in D \& d' \in D \& e' \cdot d' \in s[\![\phi]\!]_{\mathcal{M},g[x/d]}\}$
 - (23a) adds individual d to end of list e'
 - (23a) adds individual d to second to last position of list e'

Two List System

- (24) a. $s[\exists_P x \phi]]_{\mathcal{M},g} = \{\langle e, e' \rangle \mid e = \langle \rangle \cdot d \& d \in D \& e' = e''' \cdot e'' \& \langle e'', e''' \rangle \in s[\phi]]_{\mathcal{M},g[x/d]} \}$ b. $s[\exists_O x \phi]]_{\mathcal{M},g} = \{\langle e', e \rangle \mid e = \langle \rangle \cdot d \& d \in D \& e' = e'' \cdot e''' \& \langle e'', e''' \rangle \in s[\phi]]_{\mathcal{M},g[x/d]} \}$
 - (24a) adds proximate list, e", to obviative list, e", and adds individual d to empty proximate list
 - (24b) adds obviative list, e''', to proximate list, e'', and adds individual d to empty obviative list

7